Robust Physical-World Attacks on Machine Learning Models
نویسندگان
چکیده
Deep neural network-based classifiers are known to be vulnerable to adversarial examples that can fool them into misclassifying their input through the addition of small-magnitude perturbations. However, recent studies have demonstrated that such adversarial examples are not very effective in the physical world—they either completely fail to cause misclassification or only work in restricted cases where a relatively complex image is perturbed and printed on paper. In this paper we propose a new attack algorithm—Robust Physical Perturbations (RP2)— that generates perturbations by taking images under different conditions into account. Our algorithm can create spatiallyconstrained perturbations that mimic vandalism or art to reduce the likelihood of detection by a casual observer. We show that adversarial examples generated by RP2 achieve high success rates under various conditions for real road sign recognition by using an evaluation methodology that captures physical world conditions. We physically realized and evaluated two attacks, one that causes a Stop sign to be misclassified as a Speed Limit sign in 100% of the testing conditions, and one that causes a Right Turn sign to be misclassified as either a Stop or Added Lane sign in 100% of the testing conditions.
منابع مشابه
Decision-based Adversarial Attacks: Reliable Attacks against Black-box Machine Learning Models
Many machine learning algorithms are vulnerable to almost imperceptible perturbations of their inputs. So far it was unclear how much risk adversarial perturbations carry for the safety of real-world machine learning applications because most methods used to generate such perturbations rely either on detailed model information (gradient-based attacks) or on confidence scores such as class proba...
متن کاملDecision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Many machine learning algorithms are vulnerable to almost imperceptible perturbations of their inputs. So far it was unclear how much risk adversarial perturbations carry for the safety of real-world machine learning applications because most methods used to generate such perturbations rely either on detailed model information (gradient-based attacks) or on confidence scores such as class proba...
متن کاملModels and Framework for Adversarial Attacks on Complex Adaptive Systems
We introduce the paradigm of adversarial attacks that target the dynamics of Complex Adaptive Systems (CAS). To facilitate the analysis of such attacks, we present multiple approaches to the modeling of CAS as dynamical, datadriven, and game-theoretic systems, and develop quantitative definitions of attack, vulnerability, and resilience in the context of CAS security. Furthermore, we propose a ...
متن کاملCleverhans V0.1: an Adversarial Machine Learning Library
cleverhans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models’ performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial e...
متن کاملSimulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine
In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.08945 شماره
صفحات -
تاریخ انتشار 2017